

Diseño de una mezcla de mortero con plástico reciclado para la fabricación de blocks de mampostería

Concrete design with recycled plastic as aggregate in order to masonry blocks fabrication

Por: Carlos Alberto Hoyos Castellanos, Fernando Treviño Montemayor y Alberto González Peña Instituto Tecnológico de Tepic

Cómo citar: Hoyos, C., Treviño, F. & González, A. (2019). Diseño de una mezcla de mortero con plástico reciclado para la fabricación de block de mampostería. *Universo de la Tecnológica*. 11(2) pp 13-17

Dirección electrónica del autor de correspondencia: hoyoscarlos@ittepic.edu.mx

> Recibido: 18 de noviembre 2018 Aceptado: 6 de febrero 2019

RESUMEN: Este artículo presenta el diseño de una mezcla de mortero para la fabricación de blocks de concreto para mampostería. Se muestran los resultados de diferentes diseños de mezclas y su comparación con elementos similares de block de concreto convencional. Como resultado final se define la proporción de mezcla que presenta los mejores resultados y se realiza una comparación con la normatividad aplicable.

PALABRAS CLAVE: Block de concreto, reciclaje de plástico, capacidad de carga, construcción

ABSTRACT: This article presents the design of a mortar mix for the manufacture of concrete blocks for masonry. The results of different mix designs and their comparison with similar elements of conventional concrete block are shown. As a result, the mix proportion that presents the best results is defined and a comparison is made with the applicable regulations.

Key Words: Masonry Block, plastic reciclyng, load capacity, construction

Introducción

De acuerdo a (Padilla, 2008), la construcción basada en block o ladrillos es uno de los métodos constructivos más comunes. Básicamente es la unión de elementos sólidos unidos mediante una mezcla cementante (usualmente un mortero) que forman paredes y muros, las cuales están delimitadas por castillos y cadenas. A este tipo de construcción se le denomina mampostería.

El proceso de fabricación de los blocks y los materiales empleados pueden variar de una región a otra, sin embargo, siempre se buscará fabricar elementos que tengan la resistencia adecuada para el proceso constructivo. Las normas aplicables a este proceso de fabricación son las siquientes:

• NMX-C-036-ONNCCE-2013, Resistencia a la compresión de bloques, tabiques o ladrillos y tabicones y adoquines, métodos de ensayo (Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S.C., 2013)

• NMX-C-037-ONNCCE-2013, Determinación de la absorción total y la absorción nominal de agua en bloques, tabiques o ladrillos y tabicones, método de ensayo (Organismo Nacional de Normalización y Certificación de la COnstrucción y la Edificiación, S.C., 2013)

• NMX-C-038-ONNCCE-2013, Determinación de las dimensiones de bloques, tabiques o ladrillos y tabicones, método de ensayo (Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación S.C., 2014)

• NMX-C-404-ONNCCE-2012, Bloques, tabiques o

ladrillos y tabicones para uso estructural, especificaciones y métodos de ensayo (Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S.C., 2012)

De acuerdo a NMX-C-404-ONNCCE-2012 (Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S.C., 2012) los elementos de mampostería deben tener la siguiente resistencia a la compresión:

Tabla 1. Resistencia a la compresión de elementos de mampostería.

Tipo de pieza	Configuración	Resistencia media	Resistencia mínima individual
		MPa / kg/cm²	MPa / kg/cm²
	Macizo	15 (150)	12 (120)
Bloque	Hueco	9 (90)	7 (70)
	Multiperforado	15 (150)	12 (120)
Tabique	Hueco	9 (90)	7 (70)
(largo > 300 mm)	Multiperforado	9 (90)	7 (70)
Tabique	Macizo	11 (110)	7 (70)
(largo < 300 mm)	Hueco	9 (90)	7 (70)
	Multiperforado	15 (150)	12 (120)

Fuente: Norma Mexicana NMX-C-404-ONNCCE-2012

Ahora bien, de acuerdo a la normatividad mexicana NMX-C-404-ONNCCE-2005, los blocks se pueden clasificar de acuerdo a los materiales con que están hechos, de acuerdo a la siguiente tabla:

Tabla 2. Tipos de blocks y los materiales de fabricación.

Tipo de pieza	Materiales	Forma
	Grava — cemento	Rectangular
	Arena – cemento	Rectangular
Bloque	Barro extruido	Rectangular
Dioque	Barro recocido	Rectangular
	Sílico calcáreo	Rectangular
	Otros	Otras
Tabique (ladrillo)	Barro recocido	Rectangular
Macizo	Barro Extruido	Rectangular
Hueco	Otros (concreto)	Rectangular
Multiperforado		Otras
	Grava — cemento	Rectangular
Tabicón	Arena - cemento	Rectangular
	Tepojal – cemento	Rectangular
	Otros	Otras

Fuente: Norma Mexicana NMX-C-404-0NNCCF-2005

Los blocks pueden tener dos, tres o más perforaciones. Las dimensiones tendrán una tolerancia de +/- 3 mm en altura y +/- 2mm en ancho y largo. Las paredes deberán tener los siquientes espesores:

Tabla 3. Tipos de blocks y sus dimensiones.

Tipo de block (cm)	Espesor mínimo de paredes exteriores (mm)
10 x 20 x 40	20
12 x 20 x 40	20
15 x 20 x 40	25
20 x 20 x 40	32
25 x 30 x 40	35
30 x 30 x 40	38

Fuente: Norma Mexicana NMX-C-404-ONNCCE-2005

El área neta de las piezas huecas debe ser al menos el 50% del área total, mientras el espesor de las paredes interiores de los blocks de hasta 4 huecos no deberá ser menor a 20 mm y el espesor mínimo para piezas con más huecos será de 7 mm.

La resistencia de los bloques deberá cumplir lo especificado en la siguiente tabla, a menos que el reglamento de construcción local marque un valor diferente.

Tabla 4. Resistencia a la compresión.

Tipo de Pieza	Configuración	Resistencia media Fp MPa (kg-cm2)	Resistencia media Fp Min MPa (kg-cm2)
	Macizo	15 (150)	12 (120)
Bloque	Hueco	9 (90)	7 (70)
	Multiperforado	15 (150)	12 (120)
Tabique	Hueco	9 (90)	7 (70)
(largo > 300 mm)	Multiperforado	9 (90)	7 (70)
Tabique	Macizo	11 (110)	7 (70)
(largo < 300 mm)	Hueco	9 (90)	7 (70)
tial go < 500 mills	Multiperforado	15 (150)	12 (120)

Fuente: Norma Mexicana NMX-C-404-ONNCCE-2012

Resultados

La investigación realizada se enfocó a los bloques de concreto para mampostería. En primera instancia se analizaron los bloques disponibles en el mercado de la ciudad de Tepic, Nayarit, obteniendo los siguientes resultados del análisis a la compresión.

Tabla 5. Resistencia a la compresión de los blocks en el mer-Proveedor 1 cado.

No. de	15 x 20 x 40			
Muestra	Peso	Carga	Resistencia	Res Real
1	6.200	5,600	9.3333	15.7463
2	7.020	8,600	14.3333	24.1818
3	6.215	4,700	7.8333	13.2156
4	6.095	4,900	8.1667	13.7780
5	6.140	5,000	8.3333	14.0592
6	6.300	4,800	8.0000	13.4968
7	6.180	5,200	8.6667	14.6215
8	6.460	5,000	8.3333	14.0592
9	7.145	7,200	12.0000	20.2452
10	6.285	6,600	11.0000	18.5581

No. de	20 x 20 x 40			
Muestra	Peso	Carga	Resistenci	Res Real
1	8.245	10,200	12.7500	25.0836
2	8.830	10,400	13.0000	25.5754
3	8.575	8,800	11.0000	21.6408
4	8.840	12,800	16.0000	31.4775
5	8.655	13,000	16.2500	31.9693
6	8.945	17,000	21.2500	41.8060
7	8.885	11,400	14.2500	28.0346
8	9.630	12,300	15.3750	30.2479
9	9.995	15,300	19.1250	37.6254
10	9.150	15,800	19.7500	38.8550

No. de	10 x 14 x 28			
Muestra	Peso	Carga	Soga	Lambrin
1	4.385	20,800	74.2857	
2	4.250	18,600	66.4286	
3	3.965	16,000	57.1429	
4	3.985	17,300	61.7857	
5	4.325	17,400	62.1429	
6	4.010	30,000		76.5306
7	4.030	29,000		73.9796
8	3.730	22,500		57.3980
9	3.750	20,700		52.8061
10	4.175	37,800		96.4286

Proveedor 2

No. de	15 x 20 x 40			
Muestra	Peso	Carga	Resistencia	Res Real
1	8.050	8,300	13.8333	23.3382
2	8.100	8,100	13.5000	22.7758
3	8.240	6,400	10.6667	17.9957
4	8.205	8,100	13.5000	22.7758
5	8.315	7,000	11.6667	19.6828
6	8.275	11,000	18.3333	30.9302
7	8.210	9,000	15.0000	25.3065
8	8.025	4,800	8.0000	13.4968
9	8.845	13,300	22.1667	37.3974
10	8.525	8,200	13.6667	23.0570

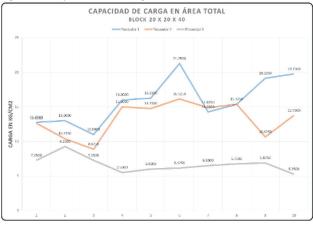
No. de	20 x 20 x 40			
Muestra	Peso	Carga	Resistencia	Res Real
1	11.310	10,100	12.6250	24.8377
2	9.720	8,300	10.3750	20.4112
3	10.645	7,100	8.8750	17.4602
4	10.260	12,000	15.0000	29.5101
5	11.255	11,800	14.7500	29.0183
6	10.850	12,900	16.1250	31.7234
7	10.805	11,900	14.8750	29.2642
8	11.495	12,300	15.3750	30.2479
9	10.585	8,500	10.6250	20.9030
10	10.530	11,000	13.7500	27.0510

No. de	10 x 14 x 28			
Muestra	Peso	Carga	Soga	Lambrin
1	4.185	11,500		29.3367
2	4.300	19,800		50.5102
3	4.505	16,800		42.8571
4	4.540	19,800		50.5102
5	4.340	17,800		45.4082
6	4.100	23,500	83.9286	
7	4.535	33,000	117.8571	
8	4.245	29,700	106.0714	
9	4.075	23,000	82.1429	
10	4.100	24,100	86.0714	

Proveedor 3

No. de	15 x 20 x 40			
Muestra	Peso	Carga	Resistencia	Res Real
1	8.355	7,500	12.5000	21.0887
2	8.395	6,400	10.6667	17.9957
3	8.265	8,000	13.3333	22.4947
4	8.450	10,100	16.8333	28.3995
5	8.440	9,700	16.1667	27.2748
6	9.880	10,400	17.3333	29.2431
7	9.515	12,200	20.3333	34.3044
8	8.055	7,400	12.3333	20.8076
9	8.315	8,700	14.5000	24.4629
10	8.105	6,700	11.1667	18.8393

	20 x 20 x 40					
Peso	Carga	Resistencia	Res Real			
9.915	5,800	7.2500	14.2632			
10.690	7,400	9.2500	18.1979			
10.225	5,800	7.2500	14.2632			
10.275	4,400	5.5000	10.8204			
10.565	4,800	6.0000	11.8041			
10.265	4,900	6.1250	12.0500			
8.790	5,200	6.5000	12.7877			
10.385	5,400	6.7500	13.2796			
10.990	5,500	6.8750	13.5255			
9.295	4,200	5.2500	10.3285			


10 x 14 x 28								
Peso	Carga	Soga	Lambrin					
4.645	26,800	95.7143						
4.610	27,100	96.7857						
4.755	31,000	110.7143						
4.645	29,600	105.7143						
4.825	31,200	111.4286						
4.660	14,200		36.2245					
4.595	13,200		33.6735					
4.760	11,800		30.1020					
4.780	15,400		39.2857					
4.895	16,400		41.8367					

Fuente propia

Al analizar los resultados anteriores, podemos definir que ninguna de las muestras adquiridas a los proveedores cumple con la normatividad vigente para considerarse en el uso estructural para edificaciones.

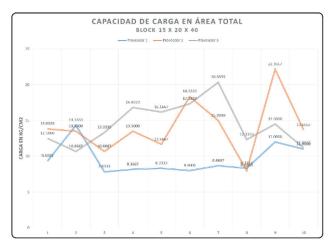

Esta información nos sirve para generar las siguientes gráficas:

Figura 1. Capacidad de carga en blocks huecos 20x20x40.

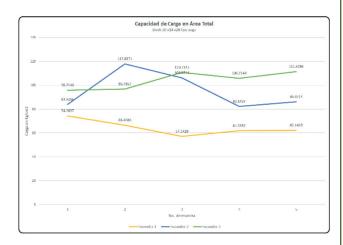

Fuente: Gráficas generadas por análisis propio

Figura 2. Capacidad de carga en blocks huecos 15x20x40.

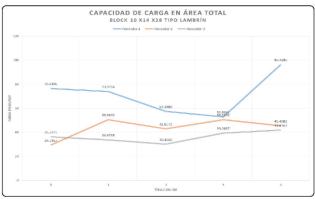

Fuente: Gráficas generadas por análisis propio

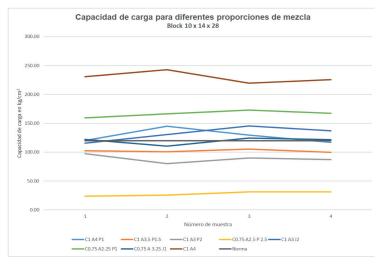
Figura 3. Capacidad de carga en blocks sólidos 10x14x28 tipo soga.

Fuente: Gráficas generadas por análisis propio

Figura 4. Capacidad de carga en blocks sólidos 10x14x28 tipo lambrín.

Fuente: Gráficas generadas por análisis propio

Se procedió a realizar pruebas de diferentes proporcionamiento de mezclas, obteniendo los siguientes resultados:


Tabla 6. Resistencia a la compresión de los blocks con agregado plástico.

	Proporción de la mezcla			Capacidad de carga kg/cm² Block sólido 10x14x28			
Cemento	Arena	Jal	Plástico	Muestra 1	Muestra 2	Muestra 3	Muestra 4
1	4		1	120.3	145.11	129.73	116.86
1	3.5		1.5	102.3	100.57	105.36	99.9
1	3		2	97.44	80.23	90.04	87.36
0.75	2.5		2.5	23.97	25.51	31.04	31.22
1	3	2		115.79	130.62	145.56	137.25
0.75	2.25		1	159.54	166.33	172.76	167.2
0.75	3.25	1		122.19	110.46	124.49	121.68
1	4			230.61	242.86	219.64	225.64

Fuente propia

La gráfica que se genera con estos datos se muestra a continuación.

Figura 5. Capacidad de carga en blocks con agregado plástico.

Fuente: gráficas generadas por análisis propio

Con estos datos se puede ver que es posible generar una mezcla que cumpla las especificaciones de la norma para block sólido. La norma establece 120 kg/cm2 como resistencia mínima a la compresión y esto es cumplido por las

16

proporciones de mezcla Cemento — Arena — Plástico 1-4-1 y 0.75-2.25-1. La primera lleva una mayor cantidad de cemento y también mayor cantidad de arena, por lo que puede tener un mejor rendimiento económico, lo cual sería factible a ser evaluado posteriormente.

El siguiente paso será realizar una investigación donde se apliquen las pruebas de absorción de humedad y resistencia al fuego para que se pueda tomar la decisión de tomar como óptima una proporción específica.

Referencias bibliográficas

- Organismo Nacional de Normalización y Certificacion de la Construcción y la Edificación S.C. (31 de Enero de 2014). Norma Mexicana NMX-C-038-ONNC-CE-2013. Determinación de las dimensiones de bloques, tabiques o ladrillos y tabicones. Método de ensayo. México: Diario Oficial de la Federación.
- Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S.C. (13 de Diciembre de 2012). Norma Mexicana NMX-C-404-ONNC-CE-2012. Bloques, tabiques o ladrillos y tabicones para uso estructural Especificaciones y métodos de ensayo. México: Diario Oficial de la Federación.

- Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S.C. (03 de Julio de 2013). Norma Mexicana NMX-C-036-ONNC-CE-2013. Resistencia a la compresión de bloques, tabiques o ladrillos y tabicones y adoquines. Método de ensavo. México: Diario Oficial de la Federación.
- Organismo Nacional de Normalización y Certificación de la COnstrucción y la Edificiación, S.C. (31 de Enero de 2013). Norma Mexicana NMX-C-037-ONNC-CE-2013. Determinación de la absorción total y la absorción inicial de agua en bloques, tabique o ladrillos y tabicones. México: Diario Oficial de la Federación.
- Padilla, M. A. (2008). Tesis "EVALUACIÓN DE LA RESISTEN-CIA A LA COMPRESIÓN DE BLOCKS FABRICADOS EN REGIÓN DE PEROTE, VER., DE ACUERDO A LA NORMA NMX-C-ONNCCE-2004". Xalapa, Veracruz: Universidad Veracruzana, Facultad de Ingeniería Civil.
- The Constructor Civil Engineering Home. (19 de 04 de 2017). Obtenido de https://theconstructor.org/buil-ding/types-concrete-blocks-masonry-units/12752/