Dependence of the MIT rule on adaptation gain and amplitude of the input signal
Keywords:
Adaptation gain, MIT rule, persistent excitationAbstract
The effect of having a persistent excitation signal in a dynamic system is shown; this kind of signals accelerates the parameters convergence into their real values. The MIT rule depends on the adaptation gain and the input signal amplitude. A modification of the MIT rule is also shown, for avoiding the dependence of the input amplitude for the parameters convergence, because some systems uses small inputs as the electronic ones. As case of study, the biodegradation control of phenol into a bioreactor by using the modified MIT rule is shown.
Downloads
References
Ben-Youssef, C. & Vázquez-Rodríguez, G.A. (2011). Model-based design of different fedbatch strategies for phenol degradation in acclimatized activated sludge cultures. Bioresource Technology. 102(4) pp. 3740- 3747.
Birla, N. & Swarup, A. (2012). Adaptive Preview Control: A Novel Control Structure. IFAC Proceedings Volumes. 42(1) pp. 13-16
Chitra. M., Pappa. N. & Abraham, A. (2018). Dissolved oxygen control of batch bioreactor using model reference adaptive control scheme. IFAC-PapersOnLine. 51(4) pp. 13-18
Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y. & Weber, P. (2014). Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed. Reliability Engineering & System Safety. 132 pp. 196-206
Fernández, B. & Márquez, M. (2019). Diseño de un control adaptable por modelo de referencia para nivel de líquido. Universo de la Tecnológica. 11(2) pp. 18-21
Kamali, M., Gameiro, T., Costa, M.E., Capela & I., Aminabhavi, T.M. (2019). Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge – A kinetic study. Chemical Engineering Journal. 387 pp. 122186
Mareels, I.M., Anderson, B.D., Bitmead, R.R., Bodson, M. & Sastry, S. (1987). Revisiting the MIT rule for adaptive control. IFAC Proceedings Volumes. 20(2) pp. 161-166
Rodríguez, A., Márquez, M. & Paredes, G. (2018). Control Difuso Adaptable de un Proceso Químico. Universo de la Tecnológica. 10 (3) pp. 8-11
Soni, A.S. (2002). A multi-scale approach to fed-batch bioreactor control. Master of Science in Chemical Engineering Thesis. (pp. 49-76). University of Pittsburgh.